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Abstract
Particulate flows of combined granular media and fluids are relevant to several natural phenomena as well as industrial appli-
cations. In geotechnical engineering, the existing modelling approaches mainly adopt a macroscopic-based continuum analy-
sis which does not provide access to important information on the fluid flow interaction with granular media at the particle 
scale. Alternatively, particulate modelling can be a powerful tool in understanding the complex micro-mechanics of different 
phenomena such as landslide, debris flow and internal erosion. However, it is challenging to employ the existing particulate 
flow models on a scale that practically serves the design and risk assessment for earth structures. With rapid advances in 
computational power, particulate flow modelling can provide valuable insights on both the micro as well as the macro-scale 
levels. This paper reviews the different approaches of particulate flow modelling from a multidisciplinary perspective with 
emphasis on geotechnical applications. In addition, this study presents a summary of the available techniques for reducing 
the computational cost and highlights the outstanding challenges of particulate flow modelling in geotechnical engineering. 
This work should provide guidance to geotechnical engineers and researches to determine the appropriate modelling tool to 
approach particulate flow modelling and identify the major challenges associated with each approach.

Keywords Flow modelling · Ground engineering · Multiscale modelling · Two-fluid model · Particulate flow · 
Computational fluid dynamics · Discrete element analysis

Introduction

The flow of fluids in particulate media and flow of parti-
cle–fluid mixtures are interesting problems and relevant to 
several industries (e.g., pharmaceutical, chemical, civil, and 
mining). Understanding the mechanics of these phenomena 
is critical to solving important engineering problems (e.g., 
debris flow, soil erosion, liquefaction, and landslides) [1]. 
Aided by rapid advances in computational resources, cou-
pled flow modelling, hereafter referred to as particulate 
flow, has significantly developed over the past few decades. 
The existing state-of-the-art models allow for capturing 
the detailed characteristics of the flow regime such as par-
ticle–particle and particle–fluid interactions. Despite the 

advances in computational power and algorithms, the simu-
lation of industrial and phenomenological scale problems 
requires more computational resources than those avail-
able for most of engineers and researchers. Various particle 
upscaling techniques have been developed to overcome this 
obstacle and reduce computational cost [2–4]. However, it 
is quite challenging to maintain the intricate level of detail 
from refined simulations upon the upscaling process. Zhu 
et al. [5, 6] attribute this issue to the absence of a general 
theory for particulate flow (e.g., accurate description of 
momentum transfer) that allows for proper upscaling. Such 
level of detail might be more important to some applica-
tions than others and proper use of different modelling tools 
and upscaling techniques could result in acceptable results. 
Therefore, it is essential to have a good understanding of 
the theoretical aspects, modelling tools, and upscaling tech-
niques in particulate flow modelling.

The interest in fluid-granular media interaction is not new 
to geotechnical engineering. Examples include mechanical 
analysis of saturated and unsaturated soils, flow through 
water-retaining earth structures and rain-driven landslides. 
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Solid–fluid interaction is commonly estimated through mac-
roscale-based constitutive models. These models utilize a 
simplified form of fluid flow in soils, e.g., Darcy flow, and 
constitutively link other parameters such as effective stresses 
and solid skeleton deformation to the flow variables [7–9]. 
Such an approach can be appropriate when dealing with 
quasi-static applications where deformations in the solid 
skeleton can be neglected. However, when hydrodynamic 
forces are of significance to the analysis, more complex 
physics are required to fully resolve the interaction between 
soil and water and establish proper constitutive models. The 
major drawback with considering continuum-based analy-
sis is that micromechanics of interest such as the develop-
ment and evolution of piping or cavity evolution in earth 
embankments remains not fully understood. On the other 
hand, performing particulate flow modelling by accounting 
for the micromechanics of both soil particles and fluid flow 
can provide a deeper understanding and help improve the 
existing constitutive models used to capture the response of 
such applications.

It is notable that most of the major developments in 
particulate flow modelling were developed in the context 
of chemical engineering, with a special focus on fluidized 
beds and pneumatic conveying due to their vast applica-
tions. These developments were later incorporated in civil 
and geotechnical engineering to simulate a variety of phe-
nomena such as liquefaction [10, 11], landslides [2, 12], 
erosion and cavity evolution [13], riverbed erosion and 
sediment transport [14, 15], scour around pipelines [16], 
and debris flow [17, 18]. However, the largest portion of 
the literature on particulate flow is found and seemingly 
continues to be, in the context of chemical engineering 
(Fig. 1). In contrast, civil and geotechnical engineering 

contribution to the subject is relatively limited. One rea-
son for this limitation is the inherent large-scale nature of 
geotechnical applications such as earth dams and slope 
stability, which are computationally expensive to model. 
It could be argued that applications in chemical engineer-
ing are more relevant to particulate flow than geotechni-
cal engineering, however, several geotechnical phenomena 
such as erosion, debris flow, and liquefaction are strongly 
relevant to particulate flow modelling and still require 
an in-depth understanding of the underlying dynamics. 
Indeed, such limited contribution on the side of geotech-
nical engineering limits the practitioners’ accessibility to 
case studies and models catered to geotechnical engineer-
ing, which in turn hinders our understanding of particulate 
flow in geotechnical-related applications.

Several reviews of particulate flow modelling have been 
presented with emphasis on specific aspects of the models. 
For example, theoretical development and applications [5, 
6], multiscale frameworks of multi-level constitutive rela-
tionships [3, 19], thermal exchange [20], momentum cou-
pling methods [21], reactive particulate flow systems [22], 
and model development and modelling tools [23]. Despite 
the rich knowledge provided in these reviews, they are 
mainly focused on fluidized beds and pneumatic conveyors, 
while applications in the ground and geotechnical engineer-
ing are seldom discussed. Moreover, to our knowledge, a 
holistic summary of the methodology, available model-
ling tools, and upscaling methods focused on geotechnical 
engineering applications does not exist in the literature. In 
other words, a ‘starter pack’ for geotechnical engineering 
practitioners that aids the selection of appropriate modelling 
methodology, computationally feasible modelling tools, and 
proper upscaling technique is not yet available.

Fig. 1  The total number of publications on the coupling of solid-fluid flow between 1990 and 2018 Source: web of science. Keywords: particu-
late flow, CFD-DEM, solid-fluid flow coupling
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In this work, we aim to present a review of the available 
approaches for particulate flow modelling with a special 
focus to geotechnical applications, exploring the advantages 
and disadvantages of each approach with respect to the scale 
of the tackled problem. In addition, we review the avail-
able modelling tools (open source codes and commercial 
packages), highlighting the specific features of each pack-
age. Finally, we provide a detailed discussion on the cur-
rent challenges related to multi-scale modelling, upscaling 
techniques and implementation of boundary conditions. To 
keep the article size manageable, aspects related to turbulent 
flow modelling is only briefly discussed for it is considered 
to be beyond the scope of this work.

The Need for Coupled Flow Modelling 
in Ground and Geotechnical Engineering

Solid–fluid interaction in geotechnical engineering is a 
cornerstone in the mechanical analysis and design of earth 
structures. Existence of water within soils, for instance, 
fundamentally controls the state of stresses, deformation, 
and other soil properties. Accounting for such effect is 
essential for estimating the critical parameters and fac-
tors of safety needed for design. The existing conventional 
methods adopt a macroscopic approach for including such 
interaction. This macroscopic view considers the proper-
ties of the bulk soil masses, either saturated or unsatu-
rated, such as soil weight and shear strength parameters 
without direct reflection on the particulate nature of soils. 

Although conventional analysis is viable and can ade-
quately serve the design purposes, it does not allow one 
to understand important aspects of these systems that can 
only be understood through the micromechanical analysis 
of coupled water-soil interaction.

Considering an earth dam for example (Fig. 2), the con-
ventional analysis provides us with insights on the overall 
stability of the structure or the factors of safety against soil 
piping and highlights the need for special components such 
as drains and filters. However, it does not give us sufficient 
details on the process of internal erosion within the body 
of the dam where the interaction between soil particles 
and water needs to be resolved. To track the initiation and 
propagation of erosion, we need to incorporate coupled 
(particulate) flow that allows us to access the interparticle 
and particle–fluid interactions. Another example of the 
lack of information provided by macroscopic analysis is 
slope stability, for which rainfall and changes in ground-
water levels are major drives. Despite the information we 
can obtain regarding the potential failure surfaces and 
factors of safety against failure, particle movement and 
relocation within the soil pores during water flow remains 
unknown.

In some situations, conducting particulate flow model-
ling becomes indispensable, for example, the case of deter-
mining the onset of fluidization around leaking pipes. As 
such leakage can wash soil particles away and can ulti-
mately lead to the formation of cavities and sinkholes, it 
is important to understand the evolution of such a process 
at the particle level.

Fig. 2  Examples for coupled water-soil interaction in geotechnical applications; internal erosion in earth dam, soil fluidization and sinkholes due 
to pipe leakage and rain-induced debris flow
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Particle–Fluid Interaction Forces 
and Momentum Coupling

One of the most challenging aspects of particulate flow 
modelling is to accurately estimate the interaction forces 
and momentum transfer between fluid and solid phases. 
Such estimation depends on the material and flow char-
acteristics of solids and fluids as well as the extent, to 
which, these interaction forces are considered significant. 
For instance, in particulate flows with little solid concen-
tration, the solid phase is often dispersed and governed 
by the hydrodynamic forces with a negligible effect on 
the fluid motion, i.e., one-way coupling. For denser solid 
concentration, the motion of the solid particles can affect 
the fluid streamlines, which is referred to as two-way cou-
pling. In most geotechnical applications, the concentration 
of solids is typically high and requires four-way coupling, 
that is, the iterative process of obtaining the mutual impact 
of solid and fluid phases on each other by accounting for 
the effect of the changed fluid motion back on particles as 
well as for particle–particle interactions. In two-way and 
four-way coupling, it is necessary to ensure that Newton’s 
third law of motion is achieved, i.e., the impact of fluid on 
solids is equal in magnitude to the impact of solids on the 
fluid in opposite direction.

Although efforts have been made to resolve fluid-parti-
cle interactions, this aspect remains not fully understood 
and the models we have today are based on empirical or 
semi-empirical relations. This is because the underly-
ing mechanics of such interaction are very complex and 
depend on many factors such as particle shape, material 
properties of solid and fluid phases, and the type of cou-
pling considered in the problem. Nonetheless, the exist-
ing models have been proven to be robust and can ade-
quately simulate particulate flow with good accuracy. In 
this section, we exhibit the existing forces considered in 
particle–fluid interaction, the theoretical basis and special 

considerations for each force and the range of application 
to different flow regimes.

Drag Force

Drag force is a result of fluid shearing on solid particles due 
to different velocity of each phase and acts in the direction of 
the relative velocity between fluid and solid particles (Fig. 3) 
[2]. This force applies to the surface of the solid particle and 
is often assumed to be effective at the centre of the particle, 
drag force can be generally expressed as:

where Fd is the drag force, uf and up are the fluid and solid 
particle velocities, respectively, and � is the momentum 
transfer coefficient between fluid and solid particles. One 
of the early expression for � was presented by Ergun [24]:

where Cd is the drag force coefficient, � is the porosity or 
fluid volume fraction, D is the diameter of the solid parti-
cle, and �f is the fluid density. The drag coefficient given by 
Ergun is:

where Rep is the particle Reynolds number such that: 
Rep = �fD

|||uf − up
|||∕� , and � is the dynamic viscosity of the 

fluid. The expression for Cd proposed by Ergun is mainly 
based on the experimental correlations obtained from the 
fluidization of dense granular beds, thus, it is not considered 
suitable for more dilute flows ( � ≤ 0.8 ) [25]. Therefore, 
another expression for Cd was proposed by Wen and Yu [26] 
for flows with 𝜀 > 0.8:

(1)Fd = �
(
uf − up

)
,

(2)� =
3

4

Cdn(1 − �)�f

D

|||uf − up
|||,

(3)Cd =
200(1 − �)

nRep
+

7

3�
,

Fig. 3  A schematic illustration 
of fluid drag force around a 
solid particle. The directions on 
the diagram are considered for a 
case where uf > us (as depicted 
by the line weight of velocity 
vectors)
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Although combining Ergun’s and Wen and Yu’s mod-
els seems to be sufficient to cover the entire spectrum of 
porosity that can be encountered, it was found to cause 
discontinuities in the solution when the porosity fluctu-
ates around 0.8 [27]. Thus, a different correlation for drag 
force that accounts for porosity correction was introduced 
by Di Felice [28]:

where the porosity correction function � is given as:

The estimates for the drag force coefficient found in the 
literature can be traced back to the correlations of Stokes 
[29]. Different correlations are proposed by Schiller and 
Naumann [30], DallaValle [31], and Brown and Lawler 
[32]. A comparison between these correlations is con-
ducted by Zhao [2]. Zhao concluded that the correlation 
of Brown and Lawler [32] provides the best match with 
experimental data, especially for Reynolds number that 
ranges from 102 to 104.

Drag force is almost always accounted for in particulate 
flow modelling. The only exception is dilute flows with 
a solid concentration of approximately less than 0.1%, 
in which the effect of particles on the relative velocity 
of other particles may be neglected and the velocity of 
the solid particles is nearly the same as the fluid velocity 

(4)Cd =

{
24

Rep

(
1 + 0.15

(
Rep

)0.687)
𝜀−2.65 Rep < 1000

0.44𝜀−2.65 Rep ≥ 1000
.

(5)Fd =
1

2
Cd�f

�D2

4

|||uf − up
|||
(
uf − up

)
�−�+1,

(6)� = 3.7 − 0.65 exp

⎡⎢⎢⎣
−

�
1.5 − log10 Rep

�2
2

⎤⎥⎥⎦
.

[33]. In geotechnical application, where solid concentra-
tion is typically larger than 0.1%, the drag force is always 
considered.

Pressure Gradient Force

The difference in pressure across a solid particle induces 
force that acts over the volume of the particle i.e., buoyancy. 
For a particle with volume ( Vp ) subjected to a pressure gradi-
ent ( ∇p ), the resulting force on the particle ( F∇p ) is:

We note that the gradient term in Eq. (7) is the total pres-
sure acting on a particle that contains components of hydro-
static and hydrodynamic pressure. As pointed out by Crowe 
et al. [34], the hydrostatic pressure component represents the 
buoyancy effect, thus Eq. (7) can be decomposed as:

As can be seen from the equations, the force is propor-
tional to the volume of solid particles and the value of the 
pressure gradient. In geotechnical applications, this force 
can be significant, especially the buoyancy component, for 
submerged solid particles in quasi-static flows.

Other Particle–Fluid Interaction Forces

Other particle–fluid interaction forces can be of significance 
to particulate flow modelling. These forces include the vir-
tual mass force which accounts for the acceleration of par-
ticles within the fluid, Basset force which accounts for the 
time delay in the boundary layer development, and Saffman 
and Magnus forces which account for the rotational motion 

(7)F∇p = −Vp∇p.

(8)

Table 1  Summary of particle–fluid interaction forces and their significance to geotechnical applications

Force Expression References Significance to geotechnical applications

Drag Fd = �
(
uf − up

)

� =
3

4

Cdn(1−�)�f

D

|||uf − up
|||

Cd =

{
24

Rep

(
1 + 0.15

(
Rep

)0.687)
𝛼−2.65 Rep < 1000

0.44𝛼−2.65 Rep ≥ 1000

Ergun [24]
Wen and Yu [26]

Significant

Pressure gradient F∇p = −Vp∇p Anderson and Jackson [45] Significant

Virtual mass Fvm =
�fVd

2

(
duf

dt
−

dus

dt

)
Auton et al. [140] Significant for highly unsteady flows

Basset force
FBasset =

3

2
D2

√
��f�f

t

∫
0

1√
t−t�

d

dt

�
uf − up

�
dt� +

(uf−up)0√
t

Reeks and Mckee [141] Insignificant

Saffman force
Fsaff = 1.61�f�fD

2||�f
||−

1

2

[
uf − up

]
× �f

Saffman [142, 143] Significant for high shear flows

Magnus force FMag =
�

8
D2�f

[(
1

2
∇ × uf − �p

)
×
(
uf − up

)] Rubinow and Keller [144] Insignificant
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of solid particles. In Table 1 we include a summary of these 
forces and their significance in geotechnical applications.

In addition to particle–fluid interaction forces, turbulence 
effect can be significant to particulate flow modelling. Dif-
ferent closure models are usually adopted depending on the 
nature of the modelled problem. For example, in seepage-
type flows, where fluid velocity is typically small turbulence 
does not have a tangible effect on the flow. As flow might 
evolve into a more dynamic state (e.g., debris flow), turbu-
lence closures need to be considered to sufficiently capture 
the energy transport throughout the system. Examples of 
turbulence closures in particulate flow modelling include 
Large Eddy Simulation (LES) [35, 36], k–ε [37–39], and 
k–ω [40–42].

Approaches for Modelling Particulate Flows

The governing equations of particulate flows are challeng-
ing to solve analytically due to the various nonlinearities 
involved and complex boundary conditions encountered 
in real problems. Therefore, numerical analysis is con-
ventionally used to solve the set of governing equations. 
From a numerical point of view, the nonlinear partial dif-
ferential equations can be solved either using the Eule-
rian approach or the Lagrangian approach. In the Eulerian 
approach, the flow variables are viewed as a continuum on 
a spatially fixed or moving grid and the temporal changes 
in these variables are tracked locally within each compu-
tational cell. In the Lagrangian approach, the trajectory 
and other flow variables of the fluid or the solid particle 
are tracked overtime for every single particle. Depending 
on the numerical treatment of both the fluid and the solid 

phase, particulate flow modelling can be classified into 
three main categories: (1) Eulerian–Eulerian, (2) Eule-
rian–Lagrangian, and (3) Lagrangian–Lagrangian (Fig. 4). 
In the following section, we provide a thorough review 
of the different numerical approaches for particulate flow 
modelling and the underlying models presented under each 
approach.

Eulerian–Eulerian Approach

The purely Eulerian approach (Eulerian–Eulerian) essen-
tially depends on averaging the flow variables of solid par-
ticles and fluids. The most common type of averaging is 
volume averaging as the computations are often conducted 
within a computational cell of a finite volume [34]. One of 
the earliest attempts to average fluid flow with dispersed 
solids was presented by Van Deemter and Van der Laan [43]. 
The relationship they presented for fluid momentum is:

where ui is the velocity of the fluid, αd is the volume fraction 
of the solid particles, ρf is the fluid density, gi is the gravita-
tional acceleration, p is the pressure acting on the fluid, δij 
is the Kronecker delta, τij is the shear stress tensor, and fi is 
the force per unit volume acting on the fluid from the solid 
phase. Two problematic terms in this equation are the fluid 
velocity, ui, and the force acting on the fluid, fi, because 
they vary significantly with the volume the fluid is averaged 
over. Moreover, the use of a single value for fluid velocity 
is not suitable to represent averaged fluid flow, especially in 

(9)
(
1 − �d

)
�f
Dui

Dt
=
(
1 − �d

)
�fgi −

�

�xj

(
p�ij − � ij

)
+ f i,

Fig. 4  Different modelling approaches and their corresponding particulate flow methods
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turbulent flows. Marble [44] proposed a similar averaging 
procedure but ignored the effect of the solid phase on the 
fluid. This equation was derived for particulate flow with 
dilute dispersed solids. The equation presented by Marble is:

where the notation in Eq. (10) denotes the same variables 
as those in Eq. (9). The term f i on the right-hand side of 
Eq. (10), resembles the effect of the fluid motion on the 
dispersed solid particles. This essentially represents one-
way coupling since the effect of the solid particles on the 
fluid is neglected. This equation is often referred to in the 
literature as the “dusty gas equation”. Anderson and Jackson 
[45] proposed an averaging technique to transform the point 
variables (discrete) to a locally averaged values (continuous) 
over a volume that is large enough to contain many particles, 
yet, small compared to the dimensions of the system. They 
presented the following form of the governing equations for 
mass and momentum conservation:

(10)�f
�ui

�t
+ �fuj

�ui

�xj
= −

�p

�xi
+

�

�xj
� ij + f i,

(11)
��

�t
+

��u� i

�xi
= 0,

(12)
�(1 − �)

�t
+

�(1 − �)usi

�xi
= 0,

(13)�f�

[
�ufi

�t
+ ufj

�ufi

�xj

]
=

��f
ij

�xj
+ ��fgi − f i,

(14)�s(1 − �)

[
�usi

�t
+ usj

�usi

�xj

]
=

��s
ij

�xj
+ (1 − �)�sgi + f i,

where � is the porosity or volume fraction of the fluid in 
the averaged volume, ufi and usi are the local mean velocity 
of the fluid and solid particles, respectively, �f and �s are 
the mass density of fluid and solids, respectively, and f i is 
the average force exerted by the solid particles on the fluid 
estimated over the solid volume fraction. The first term on 
the right-hand side in Eqs. (13) and (14) lumps the overall 
stresses acting on the fluid and the solid particles:

where �f , �f and �s , �s are the effective bulk and shear vis-
cosities for the fluid and solid phases, respectively, ps

i
 is the 

pressure acting on solid particles due to particle contact 
(interparticle pressure), and pf

i
 is the local average fluid 

pressure. As can be seen in Eqs. (15) and (16), several clo-
sures are required to obtain the value of solid pressure and 
the shear stress tensor. These closures also need to be in the 
form of volume-averaged quantities to be consistent with the 
set of governing equations.

The Two‑Fluid Model (TFM)

The Two-Fluid Model (TFM) emerged as a direct applica-
tion of the volume averaging techniques. As noted by its 
name, the solid phase in the flow is treated as a fluid-like 
continuum with constitutive relationships used to describe 
the pressure and viscosity terms. In the TFM, both fluid and 
solid phases are considered as interpenetrating continua in 
the sense that both phases are expressed as a continuum over 

(15)

�
f
ij
= −pf

i
�ij + �

(
�f −

2

3
�f
)
�ij

�ufi

�xi
+ ��f

(
�ufi

�xj
+

�ufj

�xi

)
,

(16)

�
s
ij
= −ps

i
�ij + (1 − �)

(
�s −

2

3
�s
)
�ij

�usi

�xi
+ (1 − �)�s

(
�usi

�xj
+

�usj

�xi

)
,

Fig. 5  A schematic illustration of the concept of local averaging and interpenetrating continua
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the same averaging volume. The concept of interpenetrating 
continua may be difficult to visualize because both phases 
are hypothesized to coexist in the same volume, yet, only 
partially occupying that volume. In Fig. 5 we try to graphi-
cally illustrate this concept.

The core of the TFM is the constitutive relationships 
for the effective solid pressure ps , and bulk and shear vis-
cosities, �s and �s . The early closures for the viscous vari-
ables presented by Anderson and Jackson [45], Tsuo and 
Gidaspow [46], and Kuipers et al. [47] were fully empirical. 
Despite the simplicity of applying these closures, they did 
not account for the underlying characteristics of the solid 
phase rheology [48]. The Kinetic theory of Granular Flow 
(KTGF) [49–51] is among the most popular methods for 
pressure and viscosity closures for the TFM. The solid flow 
variables expressed by KTGF are in terms of the solid vol-
ume fraction, �s = (1 − �) , the normal coefficient of restitu-
tion, e , and the granular temperature, � . For example, the 
effective shear viscosity of the solid phase ( �s ) is expressed 
as [52]:

where, �(�s) is the excess compressibility of an elastic 
hard-sphere system, and d is the particle diameter. A more 
detailed discussion on the KTGF is found in Gidaspow 
[52] and Crowe et al. [34]. Coupling the TFM with KTGF 
provides the advantage of conducting relatively large-scale 
simulations. Yet, the constitutive relationships are governed 
by the microscale characteristics of the flow [48]. This is in 
contrast to the previously presented empirical constants used 
for closure, which did not consider the underlying physics 
of the flow, and perhaps even argued to be unphysical [5, 6].

(17)

�s =
5
√
�

12

�
1

(1 + e)�
�
�s
� +

2

5
+ 0.193(1 + e)�(�s)

�
�sd

√
�,

From the above discussion, it is obvious that the TFM, 
although being valid for the simulation of some particular 
problems, lacks the very basic description of particulate 
dynamics on the microscale. This is because all the interpar-
ticle and particle–fluid interactions are indirectly included 
through averaged values obtained from closures. Crowe et al. 
[34] argue that the idea of the Two-Fluid Model is essentially 
flawed because the magnitude of averaging volume might 
significantly differ from the size of point volume, which does 
not give accurate representation of the fluctuations in point 
velocity (Fig. 6). This averaging technique might be valid for 
gaseous flows where the mixture contains solid components 
of comparable size to the averaging volume, but cannot be 
generalized to the broad range of concentrations of dispersed 
solids in a fluid. For all these reasons, a model is needed to 
describes the flow characteristics at the particle scale level 
where no such averaging or heavy reliance on constitutive 
relationships is used.

Eulerian–Lagrangian Approach

In the Eulerian–Lagrangian approach, the motion of the solid 
particles is tracked using the Newtonian laws of motion. 
The tracking of individual particles, with no dependence 
on a computational mesh, offers the advantage of account-
ing for the discrete nature of the solid phase. Moreover, the 
solid–fluid interaction forces (e.g., drag forces and pressure 
gradient forces) can be directly implemented instead of the 
previously used indirect averaging approach of the TFM. 
Indeed, the Lagrangian approach in simulating solid par-
ticles does not eliminate the complexity of the estimation 
of particle fluid-interaction forces because the complexity 
runs deeper than the issue of volume averaging. However, 
there is no doubt that the use of the Lagrangian approach for 
simulating the solid phase has refined the state of simula-
tion and provided access to information on the microscale 

Fig. 6  A comparison of velocity 
fluctuations between volume-
averaged velocity 〈u〉 and point 
velocity u 
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interactions that were impossible to obtain from the Eule-
rian–Eulerian approach.

Several models have been presented for the simulation 
of both the Lagrangian and Eulerian numerical treatment in 
particulate multiphase flows. For the fluid phase (Eulerian), 
the locally averaged Navier–Stokes equations (Eq. (13)) is the 
most commonly used. Alternatively, the Lattice Boltzmann 
method can be used to model the fluid phase, where the fluid 
flow is modelled via streaming and collision processes on 
a two-dimensional or three-dimensional lattice. As for the 
Lagrangian treatment of solid particles, the most commonly 
used model is the Discrete Element Model (DEM). Other 
methods such as Discrete Phase Method (DPM) [53–55], 
Dense Discrete Phase Method (DDPM) [56–58], and Mul-
tiphase Particle-In-Cell (MP-PIC) [59–62] have also been 
used to simulate the motion of solid particles in a Lagrangian 
framework. In this section, we review the theoretical aspects, 
coupling strategies and the field of application of the Eule-
rian–Lagrangian-based models.

Discrete Element Model

The work of Cundall and Strack [63] presented the first model 
for accurately simulating the motion of granular solids. The 
translational and rotational motion for a particle i with mass 
mi and moment of inertia Ii are described by Newton’s second 
law as:

where vi and �i are the translational and angular velocities of 
particle i, respectively, Fc

ij
 and Mij are the contact force and 

moment acting on particle i by particle j or wall, Fnc
ik

 is the 
contactless forces (e.g., electrostatic or liquid bridge forces) 
acting on particle i by particle k, Ff

i
 is the particle–fluid 

interaction force on particle i, and Fg

i
 is the gravitational 

force acting on particle i. Figure 7 shows a schematic for 
the different contact and non-contact forces in a particle i 
by a particle in contact (j) and a particle not in contact (k).

Cundall and Strack [63] proposed a linear spring-dashpot 
model to estimate the contact forces, where the spring part 
of the model is directly related to contact deformation (both 
normal and tangential); the dashpot part represents the vis-
cous dissipation of the force.

The normal and tangential contact forces in the DEM 
model can be expressed as:

(18)mi

dvi

dt
=
∑
j

Fc
ij
+
∑
k

Fnc
ik
+ Ff

i
+ F

g

i
,

(19)Ii
d�i

dt
=
∑
j

Mij,

(20)Fcn
ij
= −Kn�ijnc − Cn

(
vc ⋅ nc

)
nc

(21)Ft
ij
= −Ktv

�
�
+ Ct

(
v� × nc

)
× nc

Fig. 7  A schematic for the 
contact and non-contact forces 
affecting on particle i by (i) par-
ticle j in contact and (ii) particle 
k that is not in contact
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where Kn and Kt are the normal and tangential spring stiff-
ness, respectively, Cn and Ct are the viscous dissipation 
coefficients related to the dashpot, vc is the relative velocity 
between particles in contact and nc is the normal unit vec-
tor at the contact point. In addition to the contact forces 
between particles, models have been presented to estimate 
the non-contact forces such as electrostatic forces [64], liq-
uid bridge, and capillary forces [65, 66], and van der Waals 
forces [67, 68].

CFD‑DEM Model

Coupling of DEM and Computational Fluid Dynamics 
(CFD) has been gaining more popularity since was first 
introduced by Tsuji et al. [69]. The use of DEM provided 
unprecedented advantages in simulating the motion of the 
solid phase of the flow, both translational and rotational, 
which was not achieved by any of the previous models. In 
addition, it facilitated the implementation of different par-
ticle shapes and interactions. Although nearly all the pro-
posed models, except for Lattice Boltzmann methods, solve 
volume averaged Navier–Stokes equations, the “CFD” term 
is exclusively used for the case of solving Navier–Stokes 
equations with DEM. The two-dimensional soft sphere (i.e., 
no collision) model presented by Tsuji et al. [69] paved the 
way for many following developments. Examples for this 
include the model refinement by Xu and Yu [70] where they 
presented a detailed coupling technique for the cell-averaged 
particle–fluid interaction forces. Hoomans et al. [71] intro-
duced a two-dimensional hard-sphere model that accounted 
for the collision of solid particles based on the conservation 
of linear and angular momentum of the colliding particles. 
Shortly after, Kawaguchi et al. [72] successfully extended 
the model to 3D and obtained good agreement with experi-
mental results.

The aforementioned developments were presented to 
mainly model solid–gas particulate flows in fluidized beds. 
However, the robustness and solid theoretical grounds of 
the approach makes it valid for many other applications. For 
example, it was extensively used in pneumatic conveying 
modelling [73–75] and food processing [76, 77]. In geo-
technical engineering, the CFD-DEM model was used to 
model soil liquefaction [10, 11], landslide [2, 12], erosion 
and cavity evolution [13, 78, 79].

The governing equations for the fluid phase are the 
same as those in the TFM (Eqs. (11) and (13)) for vol-
ume-averaged continuity and Navier–Stokes equations, 
and the governing equations for the solid phase are the 
Newtonian equations of motion (Eqs. (18) and (19)). The 
coupling between CFD and DEM is done as shown in 
(Fig. 8). Firstly, solid particles are located within each 
fluid computational cell for porosity/volume fraction 
calculations. Afterwards, the fluid flow is resolved using 

the averaged Navier–Stokes equations and the continuity 
equations to estimate the new fluid position and the fluid 
forces acting on the solid particles. Following the calcu-
lation of the forces on solid particles, the DEM simula-
tion is conducted, typically, with a time step smaller than 
that required for the CFD simulation to ensure stability. 
Finally, the updated positions and initial conditions of 
the solid phase are sent back to the CFD solver to start a 
new time step until the simulation time is satisfied. This is 
referred to as “one-way coupling”, where only the effect of 
fluid forces on the solid phase is considered but the effect 
of the solid phase on the fluid motion is neglected. To con-
duct two-way coupling, the exported positions and forces 
from the DEM solver to the CFD solver is used to solve for 
fluid motion one last time before closing a single time step.

Since the time step required for DEM numerical stabil-
ity is typically smaller than that used for CFD calculations 
(e.g., finite volume), the overall speed of simulation is 
governed by the DEM calculations. To have an insight into 
this issue, let us consider the DEM time step Δt as [80]:

where � is a reduction factor to counteract the unphysical 
energy generation from the numerical approximation in the 
DEM solution, m is the mass of the particle and Kn is the 
normal stiffness of the solid particle. On the contrast, the 
stable time step for the CFD calculations can be determined 
using the Courant-Fredrich–Lewy (CFL) number [2, 81]:

where Δx is the size of the computational mesh cell for the 
CFD calculations. From Eqs. (22) and (23), the value of � is 
essentially smaller than 1/� . If we consider a typical analysis 
where the size of the computational cell is fairly larger than 
the particle size (e.g. 10 times larger), we approximately 
state that Δx > 10D , where D is the particle diameter. Where 
the particle mass is related to the particle diameter by:

Now, for the sake of clarification, if we consider sand 
particles of 1 mm in diameter with a density of 2700 kg/m3 
and normal stiffness of 2 × 105 KN/m, one can tentatively 
conclude that the stable time step for the DEM is nearly 
two orders of magnitude higher than that for the CFD. This 

(22)Δt ≤ �

√
m

Kn

,

(23)Δt ≤
Δx

�
|||uf − up

|||
,

(24)D = 3

√
6m

��s
,

(25)Δx > 10 3

√
6m

𝜋𝜌s
.



International Journal of Geosynthetics and Ground Engineering            (2020) 6:39  

1 3

Page 11 of 25    39 

conclusion is confirmed by Zhao [2] from a parametric anal-
ysis involving DEM time step such that no unphysical kinetic 
energy is generated in the system on 1250 randomly packed 
particles with elastic interparticle and wall-particle collision. 
The stable time step obtained for the DEM computations 

was found to be two orders of magnitude higher than that of 
the finite volume scheme used in CFD computations.

One of the drawbacks of the CFD-DEM model is the 
high computational cost associated with it. Despite its abil-
ity to capture the microscale interactions between fluid and 
solid phases, it takes extensive computational resources to 

Fig. 8  A flowchart illustrating the solution process of coupled CFD-DEM simulation
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perform such computations on a large scale. Hence, phe-
nomenological scale simulations using CFD-DEM have not 
yet been successfully conducted. Reflecting on geotechnical 
applications, the previously mentioned contributions of the 
CFD-DEM model in geotechnical engineering have been 
successfully validated by comparison either to experimental 
data or known analytical solutions. To get a perspective of 
this issue, modelling of internal erosion in earth dams might 
involve billions of DEM particles, the computational capac-
ity needed to simulate is beyond the available resources. 
Moreover, if such extensive computational resources are 
available, carrying out such simulations will still not be fea-
sible because it needs to be conductible within resources 
available for geotechnical engineers.

Another challenge with the application of the CFD-DEM 
model is the process of assigning and implementing fluid-
particle interaction forces. This process can be troubling 
because both the position and size of the particles can cause 
disrupted force distribution. For example, as shown in Fig. 9, 
a particle can exist partially within a cell, which means that 
duplication will occur if the force is assigned according to 
the number of the particles in a cell as the particle practi-
cally exists in two or more cells [82]. In addition, the ratio 
between particle size and cell size may cause false estima-
tion of the porosity. As shown in Fig. 9b, if the particle 
size is large compared to the cell size, porosity can be over-
estimated. Similarly, it can be underestimated in some of 
the neighbouring cells. This condition, where particles are 
smaller in size than computational cells, is often referred to 
in the literature as “unresolved simulation” [83]. For unre-
solved simulation, the misplacement of particles can lead to 
inevitable errors in summing the forces over CFD cells. As 
this assignment essentially depends on the porosity or the 
volume fraction of the solid particles, the size of a computa-
tional cell should be fairly larger than the size of the largest 

solid particle such that errors due to porosity fluctuations 
and force assignment are minimized [82, 84]. A proper ratio 
between the cell and particle sizes as suggested by Kloss 
et al. [83] is 10.

It is important to note that the implemented fluid-particle 
interaction forces such as drag force are estimated for a sin-
gle particle. Subsequently, for drag force as an example, the 
effect of surrounding particles on the drag is not considered 
[5, 6]. Furthermore, to ensure that Newton’s third law is not 
violated (i.e., the forces posed by the fluid on particles and 
vice versa are equal in magnitude), the forces are computed 
for each particle in the cell and then summed to obtain the 
interaction force at the cell scale. The sum of forces esti-
mated for single particles with no account for the effect of 
other particles will not give an accurate representation for 
interaction forces. Besides, the previously pointed issues 
with estimating the volume fraction may give misleading 
results for the interaction force. The only available way, so 
far, to overcome these issues is to conduct the calculations 
using a relatively finer mesh for the fluid and obtain the 
forces on solid particles by integrating the shear stress over 
the surface of the particle. This approach eliminates the need 
for volume averaging and constitutive relationships in the 
first place and referred to as “resolved” modelling (Fig. 10).

In resolved modelling, the CFD mesh cells are sized to 
be small compared to interparticle spacing [85]. By con-
sidering the solid particles as moving boundaries [86], the 
fluid-particle interaction forces can be obtained by integrat-
ing the shear stresses over the particle’s surface [87]. This 
approach can be practical when simulating relatively large 
bodies immersed in a fluid. However, for dense particulate 
systems involving a large number of particles with small 
interparticle spaces, the resolution of the simulation is most 
unlikely to be computationally feasible. Thus, the approach 
is seldom used for practical simulation and is rather used to 

Fig. 9  Different possible configurations of solid particles within a computational cell with respect to particle size and position (adapted from 
[74])
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refine the closure models for fluid-particle interaction forces 
[88]. This can also be seen in the multi-level hierarchy of 
multiscale simulations [3, 19, 48], where the very basic and 
most computationally expensive layer of the hierarchy is the 
direct numerical simulation used to obtain drag closures [19, 
89, 90]. In contrast to the case of unresolved modelling, 
where the overall efficiency of the simulation is dominated 
by DEM calculations, the efficiency of CFD computations 
becomes critical in resolved modelling. Thus, it is favourable 
in this case to use alternative and more efficient methods 
such as the Lattice Boltzmann Method (LBM) to simulate 
fluid flow.

Lattice Boltzmann Method (LBM)–DEM

The Lattice Boltzmann Method (LBM) is based on the dis-
cretization of the Boltzmann equation in space, time, and 
velocity field [91]. The early development of the method is 
known as the Lattice Gas Automata (LGA) [92]. Although 

this method is originated from the kinetic theory of dilute 
gases, the continuity and Navier–Stokes equations could be 
successfully recovered from it up to the second-order in time 
and space [89, 93]. In the LBM, the fluid is represented by 
packets of mass with properties characterized by a density 
distribution function PDF to avoid statistical noises encoun-
tered previously in the LGA method. These packets reside 
at the nodes of a lattice mesh, as shown in Fig. 11, and are 
allowed to move with prescribed velocity in the specified 
direction for each node to the neighbouring node (stream-
ing). After the streaming of the packets, the packets/parti-
cles colliding at a node change velocity according to certain 
rules that ensure the conservation of mass, momentum, and 
energy before and after the collision.

One of the most adopted methods for estimating and 
redistributing the particle velocities after the collision is the 
Lattice Bhatnagar–Gross–Krook (BGK) single time relaxa-
tion model [93], which is given as:

Fig. 10  Illustration for resolved 
and unresolved numerical 
simulation for particulate flows 
and the porosity fluctuations in 
a control volume with respect to 
the number of particles

Fig. 11  Two and three-dimen-
sional computational lattice 
mesh and the principal direc-
tions of streaming and collision
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where fi(x, t) is the probability density distribution of the 
fluid with velocity ei located at distance x at time t  , � is 
the relaxation time, and f eq

i
(x, t) is the equilibrium density 

distribution of the fluid. In Eq. (26), the second term on the 
right-hand side resembles the collision of fluid packets, and 
the left-hand side of the equation represents the streaming 
phase, where the term ( eiΔt ) is the distance travelled by 
the particle in the direction of ei . For a two-dimensional 
simulation, also known as the D2Q9 lattice model, there 
are eight non-zero velocity distributions at nodes 1–8, and a 
rest distribution at node 0 (see Fig. 11) [94]. For particulate 
flows, LBM can be coupled with the DEM by introducing a 
term for fluid-particle interaction as:

where B is a weighting function to account for the volume 
fraction of the solid phase ( �) and characterized by the nodal 
area occupied by the solid particles and the dimensionless 
relaxation time �∗ as:

and �s
i
 is known as the “bounce-back term” and is respon-

sible for bouncing back the non-equilibrium part of the dis-
tribution, �s

i
 is given as:

A remarkable advantage of the LBM is that it elimi-
nates the need to solve the full Navier–Stokes equa-
tions (volume-averaged for particulate flows), instead, it 
reduces to simpler local operations. This advantage makes 
LBM easier to program and therefore more efficient in 
conducting CFD calculations. As pointed by Satofuka 
and Nishioka [95], the CPU time is reduced to half when 
LBM is used compared to the conventional CFD methods 
for the same grid size. However, it is important to keep in 
mind that in particulate flow simulations involving DEM, 
the majority of the computational load comes from the 
DEM part of the simulation. As shown in Fig. 8, several 
DEM computations are conducted every time step for a 
single CFD computation because the stable time step of 
DEM is typically much smaller than this required for CFD 
[2].

The LBM-DEM has been used successfully applied 
in various simulations such as fluidized beds [96] sand 
production [97], internal fluidization and erosion of soil 
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[91], and surface erosion in soils [98, 99]. However, the 
computational cost of this method for large-scale simula-
tions is still questionable, because, as noted before, the 
DEM part of the computation remains critical in deter-
mining the overall computational cost of the model. This 
method is more efficient when very fine flow resolution is 
required as in the direct numerical simulations [48,19d].

Lagrangian–Lagrangian Approach

Throughout the previously discussed models, the fluid flow 
is always solved locally on a structured or unstructured grid. 
In contrast, the fully Lagrangian methods adopt trajectory 
tracking for both fluid and solid phases of particulate flows. 
One way to conduct such tracking is through a dynamically 
adaptive grid, where the gird follows the fluid particles/par-
cels throughout the calculation (e.g., particle finite element 
method (PFEM)). Alternatively, the fluid can be represented 
by a set of separate particles with no mesh structure (e.g., 
smoothed particle hydrodynamics (SPH) [100, 101] and 
moving particle semi-implicit (MPS) methods [102]). The 
latter methods are often referred to as meshless/mesh-free 
or particle methods. Some other methods such as the Mate-
rial Point Method (MPM) [103, 104] involve the use of a 
computational grid for intermediate calculations, yet, it is 
overall considered as a particle method.

Lagrangian tracking provides the advantage of accurately 
modelling highly convective flows, fragmentation, and free 
surface flows. This is because the errors associated with the 
discretization of the convective terms in the Eulerian solvers 
such as finite volume and finite differences no longer exist. 
However, particle tracking on a large scale, semi-implicit 
solutions that require solving Poisson’s equation for the pres-
sure field, and dynamic mesh adaptations in the Lagran-
gian methods may results in higher computational cost as 
opposed to conventional mesh-based methods such as the 
Finite Volume Method (FVM). In the following section, 
we review the theoretical aspects, models, and applicability 
to geotechnical engineering of some of the major Lagran-
gian–Lagrangian models in the literature.

Smoothed Particle Hydrodynamics (SPH)

Smoothed particle hydrodynamics (SPH) has been first 
developed in the field of astrophysics by Lucy [100] and 
Gingold and Monaghan [101]. Later on, the method was 
extensively used in hydrodynamic modelling and com-
putational fluid dynamics. In SPH, the fluid continuum is 
expressed as a set of separate particles that carry informa-
tion about the flow field such as velocity and pressure. The 
motion of these particles is governed by conservation laws 
such as mass, momentum, and energy. The flow properties at 
one particle are obtained by the super-positioning weighted 
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properties of the surrounding particles within a smoothing 
length, h , via a smoothing function known as the smoothing 
kernel W  (Fig. 12). For instance, at a particle i , the value of 
a flow variable is the smoothed sum of the variable at a set of 
particles j that exist within the smoothing length �h , where 
� is typically taken as 2 [105].

For a particle i , an averaged property f (x)i is expressed 
as:

where N  is the count of particles that exist within the 
smoothing length, mj is the mass of particle j , and ri and rj 
are the position vectors for particles i and j respectively. The 
gradient of f (x)i can be estimated by applying Gauss’s theo-
rem to the integral of f (x)i assuming full compact support 
(i.e., surrounding particles fully exist within a non-truncated 
sphere of radius �h ) as:

The continuity and Navier–Stokes equation in SPH 
framework is expressed as:

where � ij is the artificial viscosity term included to ensure 
the stability of the calculations and f bi is the body force act-
ing on particle i . � ij is expressed as [106]:
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)
 . More detailed 

discussion on the derivation and implementation of SPH 
original formulations can be found in [107].

Over the past few decades, the SPH method has under-
gone several developments such as the projection-based 
velocity field decomposition [108], Higher-Order Lapla-
cian formulation for pressure estimation [109], enforcing 
conservation of angular momentum [110], optimised par-
ticle shifting technology [111], higher-order differential 
operators [112, 113], enhanced hydroelastic coupled solver 
for fluid–structure interaction (FSI) [114], and SPH with 
numerical diffusive terms δ-SPH [115]. The method was 
proven to be superior in accuracy compared to other mesh-
based methods for free-surface and highly convective flows 
(e.g., wave breaking).

SPH–DEM

In particulate flow modelling, working within a fully Lagran-
gian framework can be more computationally convenient as 
the previously encountered problems due to the unresolved 
simulation approach in the CFD-DEM is no longer adopted. 
Potapov et al. [116] presented one of the earliest models 
for coupling SPH and DEM. In their model, the fluid–solid 
coupling was achieved by introducing so-called “artificial 
SPH particles” that are small enough to occupy the interpar-
ticle space. The flow of these particles evolves in the same 
manner as the rest of SPH particles while at the boundaries 
of solid particles a no-slip condition is enforced to ensure 
that artificial particles have the same velocity as the solid 
particles. The fluid-particle interaction forces are then esti-
mated in a resolved manner, similar to DNS, by summing 
the exerted fluid forces on solids in a direction opposite to 
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Fig. 12  Illustration of particle representation as moving boundaries and the comparative cell size scale to interparticle spacing
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the flow, which can be expressed as an additional term added 
to Eq. (33).

Following the work of Potapov et al. [116], Sakai and 
Maeda [117] developed a three-phase SPH–DEM model 
to simulate seepage failure under sheet piles considering 
three-phase flow (air, water, and soil). A multi-layer analysis 
approach was used, where each phase is modelled separately 
and then connected phases through constitutive models. The 
soil phase was assumed to be elastic-perfectly plastic, and 
combining fluid and solid phases was done using the mixture 
theory [118]. A different approach was presented by Robin-
son et al. [119] and Kwon and Cho [120] to conduct a two-
way coupling of SPH and DEM using the volume-averaged 
Navier–Stokes equations using discretized fluid-particle 
interaction forces in SPH framework. More recently, cou-
pled SPH and DEM was used to simulate solid–fluid flows 
involving free surface and large deformations [121–124]. In 
geotechnical and civil engineering applications, SPH–DEM 
has been used to model internal erosion and seepage flow 
[125], transport of soil–water mixture and flow through 
porous media [126] and flow through porous media solely 
using SPH [127, 128], and soil liquefaction and lateral 
spread [129]. In addition to coupling with DEM, SPH has 
also been used along with constitutive models for soils to 
model dynamic soil behaviour such as embankment failure 
[105], seepage-induced dike failure [130], and soil liquefac-
tion [131]. The summary in Table 2 includes a compari-
son between different modelling methods highlighting the 
numerical approach, computational cost, relevant work and 
applicability in geotechnical and ground engineering.

Modelling Tools

To carry out particulate flow modelling, the previously gov-
erning equations need to be converted to computer code. It is 
common that researches construct their own in-house codes 
such that the applications are tailored for a special case of 

analysis. However, building and debugging codes can be 
a time-consuming process and more importantly, optimiz-
ing the code may require skill sets that are not available 
for most of the civil engineers. Thus, a good knowledge of 
the available computational packages, either open-source 
or commercial, is essential to facilitate the modelling pro-
cess and save time and effort. There are specific calibres 
for selecting the proper modelling tool such as the numeri-
cal methods deployed in the package, the robustness of the 
solver, and the computational efficiency of the solver. While 
commercial packages are often preferred for use in industrial 
applications because of the robustness of the solver and the 
existence of a Graphical User Interface (GUI), they allow 
for a small room for development. On the other hand, open-
source software, despite being less convenient in terms of 
use, allow for development and implementing different phys-
ics of choice.

The modelling tools are seldom discussed in the major 
reviews on particulate flow modelling (e.g., Zhu et al. [5, 
6], Deen et al. [19], van der Hoef et al. [48]). However, few 
summaries for the available modelling tools exist in litera-
ture within specific contexts such as pneumatic conveying 
[23, 132], particulate flow in pipes [133], and code paral-
lelization [134]. Although these reviews are not specifically 
catered to geotechnical engineering applications, most of 
the included tools have been successfully used to model 
geotechnical problems. For example, Guo and Yu [13] used 
coupled COMSOL multi-physics and PFC3D software to 
evaluate different simulation methods, Shan and Zhao [17] 
used LIGGGHTS and OpenFOAM to simulate the impact of 
granular material flow into a water reservoir, and Zou et al. 
[79] coupled PFC3D with ANSYS Fluent to simulate the 
progression of internal erosion in gap-graded soils. In this 
section, we provide a summary of the available modelling 
tools for particulate flow modelling. The tools are classified 
with respect to the numerical framework, as discussed in 
the previous section. Although the complete features of the 

Table 2  Summary of particulate flow models and their numerical treatment and computational cost

Model Treatment of 
solid phase

Treatment of fluid phase References Applicability in geo-
technical engineering

Computational cost

TFM Eulerian Eulerian Anderson and Jackson [45] Limited applicability Low
DPM Lagrangian Eulerian Vakhrushev and Wu [55] Not applicable Moderate
DDPM +KTGF Lagrangian Eulerian Dickenson and Sansalone [53] Limited applicability Moderate
MP-PIC Lagrangian Eulerian Andrews and ORourke [59] Limited applicability Moderate
CFD-DEM Lagrangian Eulerian Tsuji et al. [69] Applicable High
LBM-DEM Lagrangian Eulerian Cook et al. [89] Applicable High
MPM Lagrangian Eulerian/constitutive relations Sulsky and Brackbill [104] Applicable Moderate–high
SPH–DEM Lagrangian Lagrangian Potapov et al. [116] Applicable High
MPS-DEM Lagrangian Lagrangian Sakai et al. [145] Applicable High
PFEM Lagrangian Lagrangian Idelsohn et al. [146] Applicable Moderate
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computational packages are not reviewed here, the relevant 
literature in which these packages were used is provided for 
more information.

In particulate flow modelling, the common practice is 
to link two computational packages, one for simulating the 
fluid phase and the other for simulating the solid phase. The 
reason for this is mainly because modelling tools are well-
established for simulating the relevant physics of each phase. 
This is most effective in Eulerian–Lagrangian methods such 
as the coupling of CFD packages (e.g.,  OpenFOAM® and 
ANSYS  Fluent®) with DEM packages (PFC3D™, EDEM™, 
and  LIGGGHTS®). Alternatively, a single computational 
package can be used for simulating both the fluid and solid 
phases such as  MFiX® software. This is more common in 
the cases where the fluid phase and the solid phase receive 
the same numerical treatment (e.g., Eulerian–Eulerian or 
Lagrangian–Lagrangian). The summary provided in Table 3 
includes the available packages with respect to the numerical 
method, the type of the software, whether open-source or 
commercial, and the relevant literature to each package. As 
can be seen from the summary, the CFD-DEM approach has 
the largest number of available modelling tools compared to 
the Two-Fluid Eulerian model and SPH Lagrangian model. 
The reason for this is related to the rapid development taking 
place in the fields of discrete element modelling and compu-
tational fluid dynamics, while development is receding on 
the side of the Two-Fluid Model and the Lagrangian models 
are still relatively new to the development compared to the 
other two methods.

Working Across Scales

Among the obstacles in particulate flow modelling to geo-
technical problems is the issue of scale. Some of the mod-
els such as the Two-Fluid Model are less computationally 
expensive. However, the particle–fluid interaction in this sort 
of simulation is not resolved. Therefore, there is always a 
compromise between the level of detail that computations 
can capture and the computational cost. For example, the 
CFD-DEM modelling provides an accurate description of 
the interparticle and fluid-particle interactions that can be 
valuable to understand the mechanics of geotechnical prob-
lems like internal erosion and cavity evolution. In literature, 
it is common that the computational codes are verified using 
a benchmark problem or well-established experimental 
results. Nonetheless, following the verification phase, the 
modelling is often applied to a problem at a laboratory bench 
scale or smaller. Indeed, in these studies, it is pointed out 
that the computational capacity does not allow for large scale 
computations. From the engineering perspective, this kind 
of simulations does not aid the design of new structures or 
assess the risk to existing ones.

A few attempts have been carried out to overcome the 
high computational cost through upscaled models or multi-
level modelling framework [2–4]. The upscaling process 
typically involves using larger elements (e.g., discrete ele-
ment particles) that are relatable to the original and smaller 
system through certain relations. This can dramatically 
help reduce the computational cost of simulating large sys-
tems such as embankments since the computational load 

Table 3  Summary of computational packages for particulate flow modeling. The packages marked with (OS) refer to open-source packages and 
those marked with (CO) are the commercial packages

method Solid phase Fluid phase Description Relevant publications

TFM MFiX® (OS) Multiphase (solid–fluid) solver based on the TFM 
model

Fullmer and Hrenya [147]

OpenFOAM® (OS) twoPhaseEulerFoam solver Multiphase (fluid–fluid) solver with the option of 
KTGF for estimating the stresses in the solid phase

Passalacqua and Fox [148]

CFD-DEM PFC3D™ (CO) OpenFOAM® (OS) PFC3D code for DEM coupled with OpenFOAM and 
multi-physics COMSOL for fluid flow

Zhou et al. [133]
COMSOL® (CO) Guo and Yu [13]

LIGGGHTS® (OS) OpenFOAM® (OS) LIGGGHTS (developed from LAAMPS) for DEM 
coupled with OpenFOAM

Shan and Zhao [17]

EDEM (CO) ANSYS  Fluent® (CO) EDEM software for DEM coupled with OpenFOAM 
and ANSYS Fluent for fluid flow

Sousani et al. [149]

MFiX-DEM® (OS) Multi-phase MFiX code with DEM capability for the 
particulate solid phase

Bakshi et al. [150]

DPMFoam OpenFOAM solver for multiphase Eulerian–Lagran-
gian flows

Fernandes et al. [151]

ESyS® (OS) OpenFOAM® (OS) DEM solver (ESyS and YADE) combined with CFD 
solver OpenFOAM

Zhao et al. [138]
YADE® (OS) OpenFOAM® (OS) Chen et al. [152]

SPH LOQUAT (OS) Open-source software for SPH in geotechnical 
applications

Peng et al. [153]
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is assigned to significantly a smaller number of particles. 
However, it is important to note that using larger elements, 
such as large parcels of discrete element particles, comes at 
the cost of losing access to information pertaining to fine 
particles in the system. This can be observed in some prob-
lems such as landslide, where the front propagation of the 
landslide is mostly governed by the small particles in the 
landslide. It is then up to the researcher or engineer to decide 
whether upscaling the system is feasible in terms of the lost 
information or not. Therefore, it is important for practition-
ers and researchers to have a good understanding of the 
upscaling techniques to facilitate making such a decision. 
In this section, we review three upscaling techniques (1) 
multi-level closure system, (2) coarse-grain model (parcel-
ling), and (3) hybrid Eulerian–Lagrangian approach.

Multi‑Level Modelling Strategy

Using a multi-level modelling strategy was presented by van 
der Hoef et al. [3], van der Hoef et al. [48], and Deen et al. 
[19]. This strategy depends on obtaining closure models 
from smaller and more accurate models that can later be 
applied to larger and less computationally expensive mod-
els. As can be seen in Fig. 13, the base of the hierarchy is a 
direct numerical simulation which is the most computation-
ally expensive and accurate method. In fact, this technique 
is not novel to particulate flow modelling in general. For 
example, in CFD-DEM or LBM-DEM methods, the fluid-
particle interaction forces are not resolved for each particle, 
rather averaged over the cell volume. Thus, drag closures 
from experimental or direct numerical simulations are often 
implemented to account for such forces in the simulations. 
Reflecting back on multi-scale modelling strategy, the same 
concept holds valid for larger-scale problems.

This modelling strategy, to our knowledge, has not been 
applied to any geotechnical engineering applications. This is 

mainly because the model was proposed for fluidized beds, 
specifically gas–solid simulations. Nonetheless, this concept 
is quite common in civil and geotechnical engineering and 
can be seen in design charts and tables obtained from more 
intricate and more computationally expensive simulations. 
Thus, adopting some high-fidelity calculations to obtain 
closures or constitutive relations for problems at a larger 
scale may be useful to geotechnical problems. Indeed, to do 
that, extensive computational resources should be employed. 
However, conducting such highly expensive simulations 
can provide a better understanding of the mechanics behind 
many geotechnical problems and help create more robust 
constitutive relations.

Coarse‑Grained Modelling

In discrete element modelling, it is common to make use 
of larger grains or parcels of particles to reduce the com-
putational load. Such larger grains are often resembled by 
clumps of soils or larger elements that not only reduce the 
computational load but also help make the simulation results 
more realistic. In particulate flow modelling, however, the 
use of larger grains becomes more complex as the upscaling 
or parcelling should conserve the fluid-particle interaction 
forces in addition to the interparticle forces which is only 
considered in DEM. The behaviour of lumped particles can 
vary significantly from the original system of smaller par-
ticles due to the different effects of forces on smaller parti-
cles. The same scenario is to be expected when performing 
particulate flow modelling as the fluid forces are expected to 
mobilize fine particles easily compared to larger ones. This 
becomes critical when conducting certain simulations such 
as suffusion because the priority is to capture the motion of 
fine particles and their fate within larger pores. For more 
dynamic applications such as debris flow, it might be useful 
to adopt using larger particles.

Fig. 13  Multi-scale modelling strategy (after van der Hoef et al. [3])
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Sakai and Koshizuka [4] proposed a model for upscaled 
computations of coupled computational fluid dynamics 
and discrete element modelling. The criteria behind their 
model involve preserving the same response of the large 
(upscaled) particle compared to the original smaller ones to 
the interparticle forces and fluid-particle interaction forces. 
As shown in Fig. 14, the model is constructed such that the 
translational and rotational motion of the large particles are 
equivalent to those of the original set of smaller particles. 
The drivers of the motion can be interparticle forces, fluid-
particle interaction forces, or any other external forces. For 
spherical particles, an upscaled particle of radius l larger 
than the original particles will have a volume that is l3. Thus, 
to preserve the same response of translational and rotational 
motion the two systems are related as [4]:

where m , x , I , � , and l are the particle mass, position vec-
tor, moment of inertia, angular velocity, and the radius ratio 
between the coarse grain and the small grain, respectively. 
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The subscripts cg and o refer to the coarse grain system and 
the original system, respectively. In a similar fashion, the 
relations between the normal and tangential contact forces as 
well as drag forces are derived based on the volume upscal-
ing ratio l3.

The results of the coarse grain model were compared 
to the experimental results of three-dimensional plug 
flow in a horizontal pipe of Konrad and Davidson [135]. 
The coarse grain model showed good agreement with the 
experimental results indicating the model’s capability of 
reproducing the same particle behaviour of smaller parti-
cles. However, although that Sakai and Koshizuka [4] point 
out that the model significantly reduces the computational 
cost, the speedup of the model was not explicitly stated. It 
is notable that this model was developed for gas–solid type 
flows. Nonetheless, it should be applicable to combined liq-
uid–solid flows. From a geotechnical perspective, although 
particle parcelling for DEM calculations in particulate 
flows is quite common, this upscaling technique is yet to be 
applied in geotechnical applications.

Hybrid Eulerian–Lagrangian Models

The pure continuum models, such as the TFM, are by far the 
most computationally feasible compared to discrete mod-
els. The downside of using such models is that they do not 
provide access to some interstitial information such as the 
resolved motion of solid particles or the fluid in the vicin-
ity. However, in most cases, such accuracy is only needed 
locally. This can be seen in many geotechnical applications, 
for instance, in debris flow the front position and destruc-
tive energy are of more interest than other regions, same for 
piping in earth dams where the detailed flow characteristics 
around the eroded paths are more important to obtain than 
other regions. Thus, a smart numerical scheme that com-
bines the accurate discrete element and computational fluid 
dynamics models along with continuum modelling can help 
reduce the computational cost of the model and direct the 
accuracy to certain subdomains of interest.

Hybrid Eulerian–Eulerian and Eulerian–Lagrangian 
models have been gaining attention recently because of their 
potential to allocate the computational load to specific sub-
domains. Such models typically utilize the TFM and DEM-
CFD model interchangeably such that the overall execution 
time of the model is reduced. The model proposed by Hirche 
et al. [82] is an example of such computations. In this model, 
the authors introduce so-called pseudo-Lagrangian particles 
that are included in the overall motion tracking but not in 
the DEM computations for collision and contact (Fig. 15). 
Through the use of these particles, the domain can be tuned 
to use only a portion of the Lagrangian particles for the cou-
pled DEM-CFD calculations while the rest of the pseudo 
particles are shifted into Eulerian–Eulerian computations.

Fig. 14  A schematic of the conservation of a translational and b rota-
tional motion of the upscaled particles compared to the original set of 
particles
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This model was used to simulate gas–solid flow in fluid-
ized beds and verified by comparison with experimental data 
from Link et al. [136]. The model speedup could be doubled 
using a pseudo particle ratio of 50%, compared to seven-
fold speedup when using a purely Eulerian approach. Other 
active attempts are being carried out to develop a robust 
hybrid model such as the Hybrid MFiX solver [137]. Indeed, 
performing computations for real-scale systems requires 
more speedup than what is provided by this model. In addi-
tion, the development in hybrid models, to our knowledge, 
does not allow for a selective allocation of the computa-
tional load on a meaningful physical basis. In other words, 
a smarter model that can locally direct the precession and 
computational loads is yet to be developed.

Outstanding Challenges of Particulate Flow 
Modelling in Geotechnical Engineering

Particulate flow modelling can provide valuable data on 
several geotechnical applications that cannot be obtained 
through conventional methods or experiments. The main 
advantage lies in its ability to capture both microscale and 
macroscale mechanics of the system of the modelled sys-
tems. However, as pointed before, the computational cost 
of performing particulate flow computations on a scale that 
can serve the design and assessment processes is challeng-
ing. In addition to the computational cost, models that can 
describe complex systems and actual boundary conditions 
still need to be developed. For example, most of the avail-
able literature on particulate modelling in geotechnical engi-
neering use relatively small systems to test the developed 
models (e.g., Guo and Yu [13], Shan and Zhao [17], Zhao 
et al. [138], and Cui et al. [91]). These small models often 
contain a small number of particles that can be handled 
with the available computational resources; moreover, sim-
ple boundary conditions. The two most common boundary 
conditions are periodic boundary conditions and wall bound-
ary conditions. In real-life applications, systems might have 
boundary conditions of loading, unloading, water draining, 
phase change, etc. This complexity is not often encountered 

in chemical engineering applications such as fluidized bed, 
for which most of the particulate flow models were devel-
oped. Thus, the geotechnical community needs to carry out 
its own development to tailor models that resemble tackled 
problems more accurately.

Another outstanding challenge is to develop a multi-res-
olution framework for particulate flow modelling, such that 
different spatial resolutions can be included without com-
promising the accuracy of the simulation. The previously 
presented hybrid Eulerian–Eulerian Eulerian–Lagrangian 
approach comes close to achieve this goal through tuning 
the pseudo Lagrangian particles. However, during the simu-
lation process the resolution can only be globally set for the 
entire domain rather than incorporating multi-resolution for 
subdomains. In a recent study, Khayyer et al. [139] proposed 
an adaptive multi-resolution MPS-based framework to simu-
late Fluid Structure Interaction (FSI) for elastic structures. 
The advantage of incorporating different spatial resolutions 
was found to help enhancing the efficiency of simulation 
while maintaining the intricacy of high-resolution simu-
lations, as needed. As for particulate flow applications in 
geotechnical engineering, including robust multi-scale reso-
lution can help enhance the simulation process for many 
systems that do not require refined spatial resolution for 
the entire domain, yet gives the advantage of accessing the 
information related to the micromechanics of the system. 
This can be particularly useful for modelling localized phe-
nomena such as internal erosion.

More challenges involve dynamic processes related to 
soils and rocks. In contrast to other applications such as 
pneumatic conveying and spouted beds where solid particles 
are mainly mono-sized, soil particle sizes in natural soils 
can vary significantly, even in a small sample. Along with 
variable particle size distribution, the cohesion between par-
ticles, cementing, and fragmentation of a single soil clump 
can further complicate the dynamics of particulate flow to 
a great extent. To tackle these issues, constitutive models 
that account for water existence, whether static or dynamic, 
need to be developed.

Fig. 15  A schematic showing the computational framework of combined Eulerian–Eulerian and Eulerian–Lagrangian approaches
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Summary and Conclusions

In this work, a comprehensive summary of the develop-
ment and key challenges of particulate flow modelling were 
presented. The applicability and relevance of the existing 
particulate flow models to geotechnical applications were 
discussed. The key issues and challenges identified are:

• Particulate flow modelling, despite its complexity, is 
needed to gain a better understanding of several geo-
technical problems such as failure mechanics of earth 
structures subjected to high hydrodynamic forces and 
debris flow.

• In the geotechnical field, such modelling is still under-
developed and the existing literature mainly addresses 
small and elementary systems rather than actual struc-
tures (e.g., earth dams)

• The high computational cost of conducting coupled 
solid–fluid modelling and the complexity of boundary 
conditions in real-life applications are the major obsta-
cles to develop computationally feasible large scale mod-
els and to develop constitutive models.

• Robust upscaling techniques and multidisciplinary 
approaches are needed for closing the gap in this area of 
research and developing models directed for geotechnical 
engineers and researchers.
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